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INHOMOGENEOUS ELECTRON LIQUID: H 
ATOM DIRAC DENSITY MATRIX IN LIMIT 

OF INFINITE NUMBER OF CLOSED 
SHELLS 

C. AMOVILLI” and N. H. MARCH‘ 

The Dirac density matrix py(7.7’) for the H atom with N closed shells is here treated in 
the limit N tends to inlinity. Then ( ~ ~ ( 7 ,  ?’)is shown to be derivable exactly from the zero 
energy limit of the bound state only Green function G Y 1 ( F , 7 : E ) .  I t  is further 
demonstrated for nucleizr charge A, that the Laplace transform of G y j  with respect to Z 
satisfies a useful equation of motion. Finally the s-wave only components of p,, and G;,” 
are considered. 

Ko.vwortl.s: Electron liquid; density matrix; bound-state Green function 

1. BACKGROUND 

Though, of course, many propertics of the hydrogen-like atom are well 
established, fundamental quantities like the Feynman propagator are 
still not available in a compact, usable form. However, in the recent 
work of Blinder [ I ] ,  an infinite series for this propagator has been 
established. The propagator, as Blinder stresses, is related to the 
canonical density matrix C(F,i”, a) defined by 
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I42 C.  AMOVILLI A N D  N .  H .  MARCH 

where the $,'s are the normalized eigenfunctions, with corresponding 
eigenvalues E,, of the hydrogenic Hamiltonian 

for nuclear charge Ze. The canonical density matrix C satisfies the 
Bloch equation 

to which we shall return below. 

matrix for the N closed shells p ~ ( ? , ? ' ) ,  defined by 
A parallel development has been concerned with the Dirac density 

March and Santamaria [2] demonstrated that for N = 2(K+ L 
shells), p(7,; ' )  was the second-order polynomial p(F) + f(9) 
17, - GI2 in I?, - 721. Systematically higher-order polynomials result 
from continually adding further shells M ,  N etc. Here, prompted by 
the very recent study by Heilmann and Lieb [3,4] (HL) on the diagonal 
electron density p % ( r )  = ~ ~ ( 7 ,  7'),,=, in the limit as the number of 
closed shells in equation (4) tends to infinity (see also Appendix I for 
the Fourier transform), we shall focus on the off-diagonal Dirac 
density matrix in this limit. As with p 2  discussed above, appropriate 
variables are Y+Y' and 17- 7'1, as follows, in fact, from the Runge- 
Lenz vector [5] as a constant of motion for the bare Coulomb 
Hamiltonian (2). 

2. RELATION OF DIRAC DENSITY MATRIX ~ ~ ( 7 . 7 ' )  
TO BOUND-STATE GREEN FUNCTION 

What we shall demonstrate below is an intimate connection between 
pr (7, ?') and a certain limit of the bound-state only Green function 
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INHOMOGENEOUS ELECTRON LIQUID 193 

Gr’(7,7’: E ) ,  defined by 

where E,, are tlie Coulomb bound levels -2’~’/2 i?uo, with q) the Bohr 
radius tl’lnw’. 

Let us immediately put E=O in equation (5) to find 

The RHS can alternatively be constructed from the canonical or Bloch 
density matrix in equation ( I ) ,  with thc sum now restricted to the 
bound-states, as 

Applying V:, to equation (7) and using the Blocli equation (3) 
readily yields 

This is a central result of the present study. 
We turn immediately to discuss the form of the bound state Green 

function, which is evidently required to evaluate the limiting Dirac 
density matrix px(I;;  7) from equation (8). Fortunately. Van Hoang 
et ul. [6, 71 have considered G\lL) for tlie hydrogenic atom by ~itilizing 
the well established correspondence with the isotropic harmonic 
oscillator in two-dimensional complex space. 

Their result may bc written, in  atomic tinits ( e =  1 ,  / I =  I ,  m =  I ) ,  

where w = C E .  
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One can perform the Of operation entering equation (8) inside the 
integral and then write the formal limiting result 

However, we must stress that while the result (lo), using equation 
(9) is a complete solution for the Dirac density matrix, the order of the 
limiting process E+0 and the integration in equation (9) cannot be 
interchanged. 

3. DIAGONAL EQUATION RELATING BOUND-STATE 
GREEN FUNCTION TO HL ELECTRON DENSITY 

The starting point of this section is to define a function S(r) from the 
diagonal part CF’(7, 7’; E )  of the bound-state Green function in the 
limit of zero energy, namely 

The main aim in what follows is to derive a differential equation 
relating S(r) to the HL electron density p x ( r ) .  Starting with off- 
diagonal information, use of the Schrodinger equation defined by the 
Coulomb Hamiltonian H ;  readily yields (compare equation (8)) 

1<-0 l i r n k ~ G ~ ) ( F , T ’ ; E )  = - p x ( 7 , 7 ’ )  (12) 

where the RHS reduces to the HL density on the diagonal. Now one 
expands C y) (7,7’; E )  above the diagonal 7’ = 7, recognizing, follow- 
ing Blinder, that the appropriate variables are 

x = r + r ’ +  17 -7’1 (13) 

and 

y = r + r ‘  - IF’ - 7’1, (14) 

the Runge-Lenz vector being a constant of motion. 
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Then, after same manipulation, the desired result follows in the 
form 

3.1. Solution for S(r) at large r 

HL give the large r form of p,(r), leading to (with Z= 1) 

Neglecting in the first instance the second and third derivatives at 
large r (a procedure to be confirmed below) and dropping the 1/4r2 
term relative to Z / r ,  one has the first-order diferential equation for 
S(r),  also putting Z =  1, 

I t  is readily verified that the solution is 

This result demonstrates the pronounced non- analytic behaviour of 
the bound-state Green function Cy’(7,7’ ;  E )  in the limits E-0 and 

We also remark at this point that although, as demonstrated by HL, 
p m ( r )  is finite as r-0,  the presence of the eigenvalues -Z2/2n2 in the 
denominator of GF)(7,7’; E + 0) leads to the divergence of S(r)  at the 
atomic nucleus. 

Returning briefly to the off-diagonal form G;,’)(7, 7’; E ) ,  and 
particularly its integral form (9), the simplicity of the Z dependence 
has prompted us to define the Laplace transform of Cf) with respect 
to Z. We show in Appendix 2 that the resulting quantity satisfies a 
relatively simple equation of motion which may be valuable for Future 
work in this area. 

r’m. 
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4. s-STATE COMPONENT OF GF) AND pCw (7,;’) 

It is of interest to extract the s-wave component of GF) by integration 
over angles, using orthogonality of the Legendre polynomials. Then 
the result can be expressed directly in terms of the integral Z(X) defined 
by 

which gives the s-component G E )  of G F )  in the form 

As for pm(71 7’),  pms(Fl 7’) can be obtained by allowing the Hamiltonian 
to act on GE)  in the limit w-0. The resulting equation in this case is 

E)) +FGg)] w=o . (21) 

It is important to remark that the full Dirac density matrix ~ ~ ( 7 ,  7’) 
is related to its s-wave component pms(7,7’) by the Theophilou and 
March result [8] 

where x and y are the Blinder variables defined in (13) and (14). 

5. SUMMARY AND DISCUSSION 

The main results of this paper are (i) equation (8) relating the Dirac 
density matrix for hydrogen in the limit of an infinite number of closed 
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INHOMOGENEOUS ELECTRON LIQUID I97 

shells to the bound-state Green function in the zero energy limit, (ii) 
the analogous result (21) for s-state and (iii) the large Y limit of S(Y), 
the diagonal element of the bound-state Green function as E+O, in 
equation (1 8). 

In  future work, we expect the first integral representation of 
Heilmann and Lieb [3] for the density pw(7,7) to relate to pw(7,7’) 
through the idempotency condition 

Evidently therefore, this integral representation contains some, 
albeit limited, information on the coordinate dependence of the off- 
diagonal Dirac density matrix. 

Finally, the kinetic energy density tm(r),  and its s-state only 
component tms(r),  can be calculated from (h2/2m)V1. Vft ,om(?, 7’). 
However, elsewhere we have shown [9] how kinetic energy densities 
can be expressed in terms of p,(v) and pm,r(r), plus the Coulomb 
potential. 

+ +  

Acknowledgement 

One of us (NHM) wishes to acknowledge partial financial sup- 
port from the Leverhulme Trust through the award of an Emeri- 
tus Fellowship, for work on density matrix and density functional 
theory. 

References 

[I] Blinder, S. M. (1991). Phys. Rev., A43, 13. 
[2] March, N. H .  and Santamaria, R. (1988). Phys. Rev., A38, 5002. 
[3] Heilmann, 0. J .  and Lieb, E. H. (1995). Phys. Rev., A52, 3628. 
[4] March, N. H.  (1996). Phys. Rev., A54, 5415. 
[5] See, for example, Miller, W. Symmetry groups and their applications, (Academic 

Press, London, 1972). 
[6] Van Hoang, L., Komarov, L. 1. and Romanova, T. S. (1989). J .  Phys. A: Math. 

Gen., 22, 1543. 
[7] Hostler, L. (1964). J .  Math. Phys., 5, 591. 
[8] Theophilou, A. K. and March, N. H. (1986). Phys. Rev., A34, 3630. 
[9] Amovilli, C. and March, N. H. submitted for publication. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



I98 C. AMOVILLI A N D  N. H.  MARCH 

APPENDIX 1. 

X-ray factor f,(k) corresponding to density px(r) 

The atomic scattering factorf,(k) is defined for an electron density 
distribution p,(r) as 

+ 
&(k) = 1 pW(r)exp(ik. F‘)d7. 

Utilizing the diagonal form of equation (8) and inserting into equation 
(A.1) gives, with Van Hoang et al. [6] result for Gf) an explicit 
integral form for fm(k). 

One can now examine the singularities of.fm(k). The first result to 
focus on is the divergence at  small k because of the HL asymptotic 
decay as rp3’2 at large r. 

Scaling after inserting this asymptotic form for pm(r) in equation 
(A.1) shows, with an appropriate small r cutoff thatJx(k) scales as 

fm(k) c< J’---4nr2dr, 1 sin kr 
r312 kr 

Putting kr = s, one has 

the coefficient being determined by the HL constant A. 
There are other singularities (non-analyticities) in ,f;,(k) away from 

k = 0 and these lead to factors like sin (r’j2) and cos(r’”) appearing in 
the HL asymptotic expansion for pm(r). 

APPENDIX 2. 

Laplace transform of bound-state Green function with 
respect to nuclear charge 

It is of interest to record in this Appendix that a potentially useful tool 
for future work is obtained by treating the nuclear charge Ze in the 
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I N H O M O G E N E O U S  ELECTRON LIQUID 199 

Hamiltonian (2) as a continuous variable and taking the Laplace 
transform of G r ) ,  the bound-state Green function, with respect to 2. 
One then obtains the quantity 

exp(-yZ)Gf)(Y,?’; E)dZ. (A.4) 

From the ‘equation of motion’ 

it  easy to show, by forming 3&,/3y from equation (A.4) to deal with 
the product ZCi,z’ on the RHS of equation (A .9 ,  that K h  satisfies 

As a modest example, let us extract simply the lowest bound-state 
contribution to G r ) ( F ,  J’; E )  in the limit E-0 as 

Taking the Laplace transform according to equation (A.7) yields 

which shows in this simple case that, for finite y, k ~ , ,  decays at  large r 
and r’ as ( r +  I.’)-’. 

Finally, the complete expression for K,] is, inserting G y)  from 
equation (9) into equation (A.5), 

where a pole on the imaginary axis of t ,  in the function inside the 
integral, appears at the value - i y w / 2 .  
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